Functional relationships & decision tools for EAF:

Evaluating environmental, ecosystem, and anthropogenic impact

Modeling process

Strait of Georgia time series from assessments or surveys (dots) compared to Ecosim (line)

Ecosystems where models have been tested using historical trend data

- E Bering Sea
- Aleutian Islands
- W&C GoAlaska
- E GoAlaska
- W Vancouver Island
- Hecate Strait
- Strait of Georgia
- NE Pacific
- Central N Pacific
- FF Shoals, Hawaii
- Central Chile

- Bay of Quinte
- Oneida Lake
- Scotian Shelf
- Cheasapeake Bay
- Tampa Bay
- S Brazil Bight
- North Sea
- Baltic
- S Benguela
- Gulf of Thailand

Estimated Primary Production Anomaly from NE Pacific ecosystem model compared to PDO

Estimated Primary Production Anomaly from BC shelf ecosystem model & BC upwelling index

Nutrient loading

- Florida Bay, Tampa Bay and Chesapeake Bay;
- Monthly wind, rain, river runoff, nutrient loading;
- The derived nutrient loading time series is used to force simulations;
- Sea grass density mediation effects:
 - Chl. a and sea grass;
 - Epiphytes;
 - Habitat area for some fishes, a.o.

Chesapeake Bay

- Ecosystem
 model is driven
 with nutrient
 loading and
 fishing pressure;
- Model used as 'CB Fisheries Ecosystem Model'
 - Companion to the CB FEP.

Why have Steller sea lions declined?

Sylvie Guénette Sheila Heymans Villy Christensen Andrew Trites

Two N Pacific ecosystems

@ 1999 Microsoft Corp. All rights reserved.

Hypotheses for the SSL decline

- 1. Nutritional stress?
- 2. Disturbance?
- 3. Fishing practices?
- 4. Predators?
- 5. Climate?
- 6. Disease?
- 7. Parasites?

Fitting to time series

- data
- Ecosim prediction
- Forced catches

Model results, SSL

- data
- Ecosim prediction

Aleutians

Why does the model reproduce the sea lion dynamics so well?

- We evaluated the relative impact of:
 - Changes in ocean productivity (PDO)
 - Fishing (catches)
 - Predation (orcas)
 - Competition (flatfish)

Impact of ocean productivity (PDO)

Aleutians

Impact of fishing

Aleutians

Impact of orca predation

Impact of competition from flatfish

Model indicates:

- changes in competition, predation and ocean productivity are required to explain the sea lion decline;
- fishing had the least impact;
 - pollock fisheries is not a major enterprise in the Aleutian Islands.

A key aspect of the modeling:

 Prey behavior limits predation (foraging arena assumptions)

Organisms are not chemicals!

Ecological interactions are highly organized

Big effects from small changes in space/time scale

Predation mortality & carrying capacity

Are we finally able to develop useful predictive models for ecosystem management?

- It's beginning to look like it;
- We can with some credibility describe agents of mortality and trophic interdependencies;
- Evaluation of relative impact of fisheries and environmental factors is progressing (at the 'looking for correlation'-stage.)

Experience so far:

- Prim. productivity anomalies may or may not be amplified through the food web;
- Possible to replicate development over time
 - often by incorporating environmental as well as fisheries impact;
- Requires more data
 - but mainly data we should have at hand in any case: 'the ecosystem history';
- Supplements single species assessment, does not replace it;

Acknowledgements

